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Dževad Belkić · Karen Belkić
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Abstract The fast Padé transform (FPT) has been benchmarked as a stable, high-
resolution processor. In this paper, the performance of the FPT is examined for in
vitro magnetic resonance (MR) spectroscopic data associated with ovarian, breast and
prostate cancer as well as benign or normal tissue. We also examine how the FPT
handles in vivo MR spectroscopic (MRS) time signals from human brain encoded by
high field and clinical (1.5 T) scanners. Salient comparisons are made with the con-
ventional data analysis through the fast Fourier transform (FFT). Separation of noise
from genuine signal is carried out with a view to practical applications. Compared
to the FFT, the fast Padé transform provided markedly improved resolution of total
shape spectra from encoded in vivo time signals from healthy human brain and for
in vitro data associated with ovarian cancer. Evidence is presented as to why it is
necessary to go beyond MR total shape spectra to calculate metabolite concentrations.
It is shown that error spectra, while necessary, are insufficient for accurate assess-
ment of MR data. Two examples from oncology are given to illustrate this point: (1) a
marker of breast cancer, phosphocholine, is detected on the component shape spectra,
but not on the total shape spectrum, (2) diagnostically important multiplet resonances
in prostate cancer spectra can only be detected on the component shape spectra, but
not on the total shape spectrum. The FPT provides accurate calculation of metabolite
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concentrations based on in vitro MR data from three diagnostic problems in clinical
oncology: (1) malignant and benign ovarian lesions, (2) breast cancer, fibroadenoma
and normal breast tissue and (3) prostate cancer tissue, healthy glandular and stromal
prostate tissue. Practical implementation of signal-noise separation is demonstrated
for MR time signals encoded in vivo from the human brain on a clinical (1.5 T) scan-
ner. Some 23 stable resonances are thereby identified and quantified. These results
provide the basis for the needed next steps: to extensively apply the FPT to in vivo
time signals encoded mainly on clinical scanners from e.g. brain tumors, breast, ovary
and prostate cancers as well as from benign and normal tissue. The overall goal is that
this practical approach through mathematical optimization enables Padé-based MRS
to soon be implemented in clinical oncology, including target planning, post-radio-
therapeutic follow-up and other aspects of radiation therapy.

Keywords Magnetic resonance spectroscopy · Mathematical optimization · Breast
cancer · Prostate cancer · Ovarian cancer · Radiation therapy · Brain tumors

Abbreviations
Ala Alanine
AMARES Advanced method for accurate robust and efficient spectral fitting
au Arbitrary units
CDP Cytosine diphosphate
Cho Choline
Cit Citrate
Cr Creatine
Crn Creatinine
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full width at half maximum
Glc Glucose
Gln Glutamine
GPC Glycerophosphocholine
HLSVD Hankel-Lanczos singular value decomposition
Iso Isoleucine
Lac Lactate
LCModel Linear combination of model in vitro spectra
LP Linear predictor
Lys Lysine
Met Methionine
m-Ins Myoinositol
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NMR Nuclear magnetic resonance
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PA Polyamine
PCho Phosphocholine
PE Phosphoethanolamine
ppm Parts per million
PSA Prostate specific antigen
RT Radiation therapy
s-Ins Scylloinositol
SNR Signal-to-noise ratio
SNS Signal-noise separation
Tau Taurine
tCho Total choline
Thr Threonine
Val Valine
VARPRO Variable projection method
ww Wet weight

1 Introduction

Cancer diagnostics can potentially be improved on a quantitative molecular basis by
retrieving key information that remains undetected with conventional data analysis,
such as the fast Fourier transform (FFT) and post processing via fitting and/or peak inte-
grations. The undetected information can be extracted by novel and self-contained data
analysis, called the fast Padé transform (FPT), which has been introduced and bench-
marked as the optimal method for magnetic resonance spectroscopy (MRS) [1–26].
This was made possible by widening the horizons of signal processing through finding
its natural framework in a larger and well-established theory—quantum physics [1].
By identifying the quantification problem in signal processing as quantum-mechanical
spectral analysis through the eigenvalue problem of the system’s time evolution oper-
ator, the key door was opened for using a highly-developed mathematical apparatus
in physics to overcome the otherwise insurmountable difficulties of the FFT, fittings
and the like [7,8,10].

It is through this direct connection of signal processing with quantum physics that
a paradigm shift has been established, by introducing the FPT as the method of choice
for MRS. From the standpoint of mathematical modelling, the FPT is capable of
extracting the missing information from the Fourier-analyzed time signals, because it
has more degrees of freedom via the use of two polynomials in the form of their ratio
P/Q rather than only one such polynomial encountered in the FFT. Mathematical
modeling is indispensable in signal processing, since no encoded time signal can be
interpreted directly without computations, in terms of the sought, clinically relevant
information—the concentrations of metabolites from the tissue scanned by MRS.

The fast Padé transform meets the most stringent criteria imposed by clinical oncol-
ogy for MRS [1–26]. The high resolution and stability of the FPT have been clearly con-
firmed in our studies of magnetic resonance (MR) total shape spectra [1–4,9,19,22],
thereby overcoming one of the major Fourier-caused hindrances to wider applica-
tion of MRS in clinical oncology. However, total shape spectra do not provide the
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information needed to determine how many metabolite resonances are actually
present in the tissue and in which concentrations. It is this latter information which is
vital for improving the diagnostic yield and accuracy of MRS in oncology. Using the
FPT, benchmark studies were performed in which the FPT was shown to provide exact
quantification of MRS signals and thereby metabolite concentrations are reliably and
unequivocally obtained with an intrinsic and robust error analysis [5,7–10].

It has also been demonstrated that the FPT unambiguously distinguishes genuine
from spurious peaks in MRS spectra. The number of spurious resonances is always
much larger than the number of genuine resonances. It is of utmost importance for trust-
worthy clinical applications that the genuine information is identified with certainty
by unmistakably disentangling it from noise. Via the concept of Froissart doublets
(pole-zero cancellations), the FPT is shown to achieve this task [14,17–19,25]. In
Refs. [17,20], we present the full mathematical derivation and demonstrate the exact
reconstruction of the true number of genuine harmonics for noisy time signals or free
induction decay (FID) curves with the pole-zero canonical form of the FPT. The clin-
ical significance of this capability of the FPT is that, in practice, the MRS physical
time signals are always corrupted with noise and the major problem is to identify the
genuine resonances with fidelity.

In Refs. [7,12,19,20,26], validation is given for the computational algorithms by
which the FPT yields quantitative spectral parameters. This is done without fitting
and the solution is unique. Further, the FPT outperforms other parametric estimators,
e.g. the linear predictor (LP) [27], Hankel-Lanczos Singular Value Decomposition
(HLSVD) [28], etc. Likewise, the FPT outperforms all fitting techniques used in MRS:
Variable Projection Method (VARPRO) [29], Advanced Method for Accurate Robust
and Efficient Spectral fitting (AMARES) [30], Linear Combination of Model in vitro
Spectra (LCModel) [31], etc.

Confidence in the FPT is built systematically by considering theoretically gener-
ated as well as experimentally encoded FIDs. We have performed computations [7,8]
using the FPT to reconstruct spectral parameters for an MRS time signal that are
associated with FIDs encoded on clinical scanners via proton MRS from the human
brain [32,33]. Included in these successful reconstructions are not only isolated and
closely overlapping resonances, but also those which are nearly degenerate. As will be
shown in this paper, these latter resonances cannot possibly be detected via the total
shape spectrum or error analysis through residual spectra—the difference between the
input and the modeled spectra. Only the parametric analysis provided by e.g. FPT can
detect and also exactly quantify such resonances, which are often of major clinical
importance.

In this paper, we examine the performance of the FPT for in vitro data associated
with ovarian, breast and prostate cancer as well as benign or normal tissue. We also
examine how the FPT handles in vivo encoded MRS time signals from human brain
from high field and clinical (1.5 T) scanners, with a focus upon separation of noise from
genuine signal for practical applications. Salient comparisons are made with the FFT.
These findings are viewed in relation to challenges in cancer diagnostics, particularly in
radiation neuro-oncology regarding target definition and distinction of recurrent brain
tumors form radiation necrosis. Recent work in optimization of radiation therapy (RT)
through mathematical physics is also discussed in this light [25,34–39].
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2 Data analysis

We use the polynomial quotient PK /QK (diagonal) or PK−1/QK (para-diagonal) as
a rational function in harmonic variable z−1 = exp(−iωτ), known in the literature
as the Padé approximant. In signal processing, the Padé approximant is alternatively
called the fast Padé transform [1,3] to highlight the possibility of obtaining a shape
spectrum from an FID via a non-parametric estimation as reminiscent of the FFT. The
latter type of estimation in the FPT is done by simply evaluating the Padé spectrum
PK /QK without ever searching for any of the spectral parameters that are the complex
frequencies {ωk} and amplitudes {dk}. The FPT is the only parametric estimator which
computes the envelope spectrum without the need to obtain the set {ωk, dk}. The FPT
is also used to perform parametric estimations by rooting the polynomial QK whose
roots {z−1

k } yield {ωk} and this readily leads to {dk} for each resonance. For example,
the para-diagonal FPT treats the exact spectrum, i.e. the mentioned finite-rank Green
function G N (z−1), via the unique ratio of two polynomials PK−1(z−1)/QK (z−1) at
any frequency ω:

G N (z−1) = 1

N

N−1∑

n=0

cnz−n (1)

G N (z−1) ≈ PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
k

(2)

PK−1(z
−1) =

K−1∑

r=0

pr z−r , QK (z−1) =
K∑

s=0

qs z−s, (3)

where z = eiωτ and zk = eiωkτ . The para-diagonal (L = K − 1) and diagonal
(L = K ) Padé approximants are most frequently used from the set of the gen-
eral Padé approximants, PL/QK , because they incur minimal error in practice. In
the FPT, the sum

∑K
k=1 dk/(z−1 − z−1

k ) represents the complex-valued total shape
spectrum (envelope) which is the sum of the K corresponding component spectra,
dk/(z−1 − z−1

k )(1 ≤ k ≤ K ). Here, PK−1 and QK are readily extracted from the input
data G N by treating the product G N QK in the defining relation G N ∗QK = PK−1 as
a convolution.

We apply the FPT to reconstruct spectral parameters for the MRS time signals.
Using the FPT to analyze these FIDs, the coefficients {pr , qs} of the polynomials
PK−1 and QK are computed efficiently by solving the systems of linear equations
deduced from definition (1). Once {pr , qs} are obtained, the (non-parametric) enve-
lope spectrum can be computed by evaluating the quotient PK−1(z−1)/QK (z−1) at
any selected frequency ω, as stated. To extract the peak parameters, one solves the
characteristic equation QK (z−1) = 0. This polynomial equation has K unique roots
z−1

k (1 ≤ k ≤ K ), so that the sought ωk is deduced via ωk = (i/τ) ln(z−1
k ). A similar

procedure applies to the diagonal FPT.
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For reliable quantifications in MRS, it is not only the peak positions Re(ωk) that
count;1 the peak widths Im(ωk) and the complex amplitudes dk are also critical. This
is because the kth metabolite concentration is computed from the reconstructed peak
parameters. From the spectral parameters, one can deduce the peak area underneath
each resonance. Peak area is proportional to the concentration of the metabolite, rel-
ative to a selected reference concentration (water or another metabolite). Therefore,
even for accurately determined ωk’s, the problem of obtaining the precise estimates of
the dk’s becomes extremely important. In the FPT, the kth amplitude dk depends only
upon the kth root z−1

k and it is obtained analytically from the Cauchy residue theorem
[1]. When used as a parametric estimator, the FPT first finds all the peak parameters
{ωk, dk} (1 ≤ k ≤ K ) of every physical resonance without ever using the Fourier
spectrum, or any other spectrum. A spectrum in the FPT is subsequently constructed
in the absorption mode.

As in Ref. [8], a given reconstructed resonance can be identified as true versus spuri-
ous by computing a sequence of the Padé shape spectra {Pm/Qm}(m = 1, 2, 3, . . .) in
the frequency range of interest. Here, the fingerprint of detection of the exact number
K of resonances is the attainment of the stabilization value m = m′ after which satu-
ration is systematically maintained by observing that Pm′+q/Qm′+q = Pm′/Q′

m(q =
1, 2, 3, . . .). This critical transition (m = m′) yields the sought K via K = m′, as
verified to work in practice with MRS signals [8]. This is the concept of Froissart
doublets, or equivalently, pole-zero cancellations [7,8]. The computation is carried
out by gradually and systematically increasing the degree of the Padé polynomials.
As these degrees change, the reconstructed spectra fluctuate until stabilization occurs.
The value of the polynomial degree at which the predetermined level of accuracy is
achieved represents the sought exact number of resonances K . This constancy of the
reconstructed values can be obtained, e.g. via the cannonical representation of the
Padé polynomial quotients:

P±
K−1(z

±1)

Q±
K (z±1)

= p±
K−1

q±
K

∏K−1
k=1

(
z±1 − z̃±

k

)
∏K

k′=1

(
z±1 − z±

k′
) , (4)

where z̃±
k and z±

k are the zeros of polynomials P±
K−1 and Q±

K , respectively.2 The quo-
tient form leads to cancellation of all the terms in the Padé numerator and denominator
polynomials, when the computation is continued after the stabilized value of the order
in the FPT has been attained, so that:

P±
K−1+m(z±1)

Q±
K+m(z±1)

= P±
K−1(z

±1)

Q±
K (z±1)

(m = 1, 2, 3, . . .) . (5)

1 Hereafter, Re(u) and Im(u) denote the real and imaginary parts of a complex number u.
2 Hereafter, the superscripts ± indicate the two equivalent, complementary variants FPT(±) of the fast Padé
transform operating inside and outside the unit circle |z| < 1 and |z| > 1, respectively.
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The Cauchy residue of P±
K−1/Q±

K from Eq. (5) represents the amplitudes d±
k whose

analytical expressions are:

d±
k = p±

K−1

q±
K

∏K−1
k′=1 (z±1

k − z̃±
k′)

∏K
k′=1,k′ �=k(z

±1
k − z±

k′)
. (6)

Therefore, it is obvious from Eq. (7) that whenever z±
k = z̃±

k , the amplitudes d±
k of

the poles from the Froissart doublets are exactly zero:

d±
k = 0 for z±

k = z̃±
k . (7)

For further details, see Refs. [17–19,24,25].

3 Results

3.1 Improved resolution of MR total shape spectra

3.1.1 In vivo MR spectra from healthy human brain encoded with high field scanners

In Fig. 1 we compare the performance of the FPT with the FFT for a clinical MRS
signal obtained from an in vivo recording of the brain of a healthy volunteer, using
the measured time domain data acquired at the static magnetic field strength of 4T.
These data of full signal length N = 2048 were encoded by the group at the Center for
Magnetic Resonance Research, University of Minnesota, Minneapolis, USA [33]. We
present absorption spectra at three signal lengths, for the FFT (left column) and the
FPT (right column). At the top panel of Fig. 1 the most dramatic differences between
the FFT and FPT is seen at the shortest signal length (N/16 = 128). Here, the FFT
presents no meaningful information, whereas nearly 90% of the NAA concentration is
predicted by the peak at around 2.0 ppm by the FPT at (N/16 = 128). At one quarter
signal length (N/4 = 512) on the middle left panel and at N/2 = 1024, the FFT has
not demonstrated the accurate ratio between creatine and choline at 3.0 and 3.3 ppm,
respectively; these two metabolites are still incorrectly appearing as almost equal. By
contrast, for the FPT at one quarter signal length (N/4 = 512) on the middle right
panel, the ratio of creatine to choline is correct, and remains so at half signal length
(N/2 = 1024), on the bottom right panel. The triplet of glutamine and glutamate
near 2.3 ppm can be discerned at half signal length only by the FPT, and not by the
FFT. Therein, it can be seen that the FPT resolves with fidelity more than twenty
metabolites, in which all peak parameters are accurately extracted, including the over-
lapping resonances [19]. Furthermore, while the FFT demands the total signal length
(N = 2048) for convergence of the total shape spectrum, the difference between the
two FPT spectra at N = 1024 and N = 2048 is buried entirely in the background
noise [19]. In other words, in this illustration, the Padé-generated total shape spectrum
at half-signal length can be treated as fully converged.

As seen in Fig. 1, the FPT produces no spurious metabolites or other spectral arte-
facts in the process of converging in a steady fashion as a function of the increased
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Fig. 1 Fourier and Padé absorption spectra computed using the time signal at three partial signal lengths
(N/16 = 128, N/4 = 512, N/2 = 1024), where the full signal length is N = 2048, as encoded in Ref.
[33] from occipital grey matter of a healthy volunteer. Hereafter, the abscissae are chemical shifts, as the
relative dimensionless frequencies in part per million (ppm), and the ordinates are intensities in arbitrary
units (au). Magnetic field strength: 4T
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partial signal length. It is obvious that the FPT exhibits a much faster convergence rate
than that in the FFT (for further illustrations see e.g. Refs. [2,3,19,23]). From a clinical
standpoint, a particularly important message can be gleaned from Fig. 1. Namely, that
the accuracy of the FFT is called into question, even with regard to semi-qualitative
assessments such as metabolites ratios. It is upon these ratios e.g. creatine to choline
that critical diagnostic determinations are often made, such as the distinction between
recurrent brain tumor versus radiation necrosis [22].

3.1.2 Malignant ovarian lesions based upon in vitro MR data

Poor resolution and signal-to-noise ratio (SNR) have been major problems for in vivo
MRS of the ovary [19,40]. In Fig. 2 the absorption spectra are displayed for malignant
ovarian cyst data [40] at two signal lengths. The absorption spectra of the FFT (left
panel) at N/32 = 32 (top (a)) and N/16 = 64 bottom (b)) are rough and uninterpret-
able. At N/32 = 32 (top right (c)), 9 of the 12 metabolites are resolved by the FPT.
The remaining 3 resonances (isoleucine, threonine and the second resonance in the
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Fig. 2 Comparison of the resolution performance of the fast Fourier transform (FFT) (left panels a, b) and
the fast Padé transform (FPT) (right panels c, d), for total absorption shape spectra of malignant ovarian
cyst time signals from Ref. [40] at two short partial signal lengths. At N/32 = 32 signal points (top panels)
the FFT (a) yields only a rudimentary spectrum with no discernable peaks, whereas the FPT (c) has resolved
9 of the 12 peaks. At N/16 = 64 signal points, the FFT (b) still has not adequately resolved any of the
peaks, whereas the absorption spectrum from the FPT (d) is fully resolved, with the correct heights for all
12 peaks. Larmor frequency: 600 MHz (see list of abbreviations for those corresponding to the metabolites)
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region between 3.1 and 3.2 ppm) need 64 signal points to be resolved by the FPT. All
12 metabolites are detected at N/16 = 64, and have the correct peak heights; thus the
absorption spectrum is fully converged in the FPT at N/16 = 64 (bottom right (d)).
The Padé-generated absorption spectra preserve convergence at longer fractions N/M
(M < 8) of the full time signal including N = 1024 (M = 1) [11,13,19,23]. The FFT
required N = 8192 signal points to resolve all 12 resonances. However, at that signal
length, several peak heights were incorrect. This indicates that some of the metabolite
concentrations estimated from the Fourier spectra by either fitting or peak integra-
tions will be inaccurate even with 8192 signal points. The FFT actually needed 32768
signal points for convergence of the absorption total shape spectrum [11,13,19,23].
Thus, it is seen that advances in signal processing through the FPT markedly improve
resolution of MR-visible metabolites characteristic of ovarian cancer.

3.2 The need to go beyond MR total shape spectra to calculate metabolite
concentrations

3.2.1 Evidence that error spectra are insufficient

While the high-resolution capabilities of the FPT on the level of spectral envelopes are
important for improving the diagnostic yield of MRS for oncology, it is essential to go
beyond shape spectra to compute metabolite concentrations. The total shape spectrum
provides qualitative information, but not how many metabolites underlie each peak or
the relative strength of each component. At best, the FFT takes us only to this quali-
tative 2nd step. More information is needed before the metabolites can be identified
and concentrations reliably determined; from the total shape spectrum this can only be
guessed. This point is illustrated by a critical assessment of the information provided
by error spectra. In MRS, error spectra are obtained by subtracting the absorption
total shape spectra for the full signal length from those for the partial lengths. How-
ever, in Fig. 3 we show that while obtaining the residual or error spectra at the level
of background noise may be a necessary condition, this is not sufficient for judging
the reliability of estimation. The left column in Fig. 3 displays the Padé absorption
component and total shape spectra, superimposed on top of each other at partial signal
lengths NP = 180, 220, 260. This is particularly illuminating when such shape spectra
are juxtaposed to the corresponding three consecutive difference spectra on the right
column in Fig. 3. Three consecutive difference spectra, built from the corresponding
total shape spectra, are seen as all being identical to zero, on panels (d), (e) and (f) in
Fig. 3, despite the lack of convergence of the component shape spectrum from panel
(a) in the same figure. Therefore, it is recommended to pass beyond the point where
full convergence of the total shape spectra has been reached for the first time (in this
case we must surpass NP = 180) in order to verify that anomalies do not occur in
the final results. Such final results are obtained for NP = 220 and 260 displayed on
panels (b) and (c) for the components as well as for the envelopes. Clearly, monitoring
the stability of the component spectra should be done in concert with inspection of
the constancy of the reconstructed genuine spectral parameters [19,24].
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3.2.2 Key example #1 for oncology: a marker of breast cancer, phosphocholine,
detected on the component shape spectra, but not on the total shape spectrum

In Fig. 4, we illustrate the clinical importance for breast cancer diagnostics of obtain-
ing the component spectra. The absorption component shape spectra (left panels) and
the total shape spectra (right panels) reconstructed by the FPT are shown at two partial
signal lengths NP = 1000 and NP = 1500 for malignant breast data associated with
in vitro time signals encoded by Gribbestad et al. [41]. These spectra are zoomed
into the region between 3.2 and 3.3 ppm. Therein, it is most striking that phospho-
choline and phosphoethanolamine are almost completely overlapping, separated by
only about 0.0002 ppm, but nevertheless at convergence, the FPT can reconstruct the
spectral parameters for these two resonances. At NP = 1000, as seen on the top right
panel (c), the absorption total shape spectrum is converged. However, this was not the
case for the component shape spectrum (top left panel (a)), which at 3.22 ppm, shows
the unresolved sum of peaks: #4 (PCho) and #5 (PE). At NP = 1500 in the bottom left
panel (b) of Fig. 4, the component shape spectrum is converged, with both peaks ##4
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Fig. 4 Absorption component shape spectra (left panels a, b) and total shape spectra (right panels c, d)
as reconstructed by the fast Padé transform for breast cancer from in vitro data of Ref. [41] zoomed within
the interval of 3.2–3.3 ppm. At partial signal length NP = 1000 the total shape spectrum (panel c) is
converged, but the component spectrum (panel a) has not resolved PCho and has overestimated the height
of phosphoethanolamine PE. At partial signal length NP = 1500 (bottom panels b, d) the two resonances
PCho and PE at 3.22 ppm are resolved with the correct heights. The PCho peak completely underlies PE.
Larmor frequency: 600 MHz (see list of abbreviations for those corresponding to the metabolites)
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and 5 resolved and having the correct heights, as was the case for all the other peaks
in the region between 3.2 and 3.3 ppm. The PCho peak completely underlies PE.

Data from human breast cell lines research reveal that a “glycerophosphocholine to
phosphocholine switch” occurs with malignant transformation [42], associated with
over-expression of the enzyme choline kinase responsible for PCho synthesis [43,44].
This reflects changes in membrane choline phospholipid metabolism. The main steps
in choline metabolism proceed via the cytosine diphosphate (CDP)-choline pathway
[44]. Within that pathway, choline (3.21 ppm), PCho (3.22 ppm) and glycerophos-
phocholine (GPC) (3.23 ppm) can be visualized in the proton magnetic resonance
spectrum. Thus, it is necessary to analyze the relationship among these closely over-
lapping resonances. When these three metabolites are summed up as “total choline”
(tCho), as is conventionally done with in vivo MRS, salient information for breast
cancer diagnostics could well be missed.

3.2.3 Key example #2 for oncology: multiplet resonances in prostate cancer spectra

For prostate cancer diagnostics, the importance of evaluating the component spectra
is illustrated in Fig. 5A and B showing Padé reconstruction based upon encoded in
vitro time signals from Ref. [45]. In Fig. 5A, there are numerous multiplet resonances,
including the doublet of polyamine (components 8 and 9) and two citrate doublets
(components 3–6) as well as two triplets of myoinositol (m-Ins) (components 20–25)
and of taurine (tau) (components 13–15 and 17–19). These components can only be
surmised from the total shape spectrum (Fig. 5B). When inspecting the total shape
spectra alone, the true number of resonances underlying a given structure, their posi-
tions and relative intensity can merely be guessed. This is what is actually done by
all the algorithms for post-processing via fitting that are used in the MRS literature
[30,31], due to the reliance upon Fourier-based analysis, which can only provide a
total shape spectrum. Using the FFT and fitting, the authors of Ref. [45] noted that
spectral overlap was particularly problematic with regard to the accuracy of quantifi-
cation for prostate spectra. In sharp contrast, we see that the FPT resolves multiplet
resonances, including those for regions of otherwise very high spectral density that
may best distinguish prostate cancer from normal tissue of different regions of the
prostate.

3.3 Accurate calculation of metabolite concentrations based on in vitro MR data
from three diagnostic problems in clinical oncology

3.3.1 Malignant and benign ovarian lesions

Not only does the FPT yield high-resolution shape spectra, but it also generates the
parametric data from which metabolite concentrations can be reliably computed. With
only 64 data points, the FPT exactly reconstructed the spectral parameters for all twelve
metabolite peaks. Thereby, the metabolite concentrations were computed simply and
unequivocally. Using the conventional Fourier approach, metabolite concentrations
can only be estimated from the shape spectra by integrating the areas under the peaks.
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Fig. 5 A Converged absorption component spectra reconstructed by the fast Padé transform at partial
signal length NP = 800, for normal glandular prostate (top panel a), normal stromal prostate (middle
panel b) and malignant prostate (bottom panel c) within the region between 2.4 and 3.7 ppm derived from
in vitro data of Ref. [45], B Converged absorption total shape spectra for the corresponding three cases, as
reconstructed by the FPT. Abscissae are in ppm and ordinates are in arbitrary units (au). Larmor frequency:
500 MHz. (see list of abbreviations for those corresponding to the metabolites)

Even when the peaks are well delineated, there is still uncertainty about the lower and
upper integration limits. If there are closely-lying peaks, this conventional approach
for estimating metabolite concentrations becomes highly tenuous. Then, the “spec-
tral crowding” problem severely hinders attempts at quantification [45,46]. The FPT
generates the spectral parameters from which metabolite concentrations are accurately
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Fig. 5 continued

computed, whether or not the peaks are overlapping [7,19]. Figure 6 shows the absorp-
tion spectra together with peak positions and retrieved concentrations, as achieved by
the FPT at full convergence for the malignant ovarian (top panel (a)) and benign
ovarian data (bottom panel (b)). The FPT thus performs both shape estimation and
quantification without post-processing or reliance upon any other estimator. Figure 6
is particularly useful for clinicians, providing a graphic plus quantitative overview of
malignant and benign ovarian cyst MRS data generated through reconstructions by
the FPT.
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Fig. 6 Summary of the clinically relevant quantitative data (peak positions and computed metabolite con-
centrations) together with the converged absorption total shape spectra, reconstructed by the fast Padé
transform (FPT) for malignant ovarian cyst data from Ref. [40] (top panel a), and for benign ovarian cyst
data (bottom panel b) from Ref. [40]. The metabolite concentrations are in μ M/L ww, where ww denotes wet
weight. Larmor frequency: 600 MHz (see list of abbreviations for those corresponding to the metabolites)

3.3.2 Breast cancer, fibroadenoma and normal breast tissue

Figure 7 displays the converged metabolite maps reconstructed by the FPT for
the normal breast tissue (top panel (a)), fibroadenoma (middle panel (b)) and for
breast cancer (bottom panel (c)). For the normal breast tissue, lactate (#1), has
the largest concentration (0.5040μM/g ww), slightly higher than β-glucose (#7)
(0.4500μM/g ww). The median lactate concentration in the normal breast is about
0.34 of that in the fibroadenoma. For the malignant breast, the lactate concentration
is over five times higher than in the fibroadenoma, and is clearly the largest reso-
nance, nearly three time higher than taurine (#8). The capacity of the FPT to resolve
and precisely quantify very closely overlapping resonances with certainty is clearly
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demonstrated for the spectrally dense region between 3.21 and 3.23 ppm. This spectral
region encompasses the constituents of tCho: choline at 3.21 ppm, PCho at 3.22 ppm
and GPC at 3.23 ppm. Phosphocholine and PE are nearly completely overlapping
at 3.22 ppm, separated by only 0.000203 ppm which is about four times less than
the line widths. Nevertheless, at convergence, the FPT with full fidelity reconstructs
the spectral parameters from which the concentrations of these two resonances are
computed.

3.3.3 Prostate cancer tissue, healthy glandular and stromal prostate tissue

The Padé-reconstructed positions and peak heights, and the concentrations are pre-
sented in Tables 1 and 2 for two partial signal lengths in the middle and right columns,
respectively. For the normal glandular prostate, prior to convergence at the partial
signal length (NP = 600), two peaks were unresolved: peak #11 PCho at 3.2302 ppm
and peak #13 at 3.2503 ppm, which is one of the components of a taurine triplet. The
heights of the two adjacent taurine (Tau) peaks ##14 and 15 were slightly overesti-
mated, and their positions were resolved only to two decimal places. At NP = 600 the
concentration of GPC (peak #12) next to the missing PCho peak was overestimated
by more than a factor of two. Most of the other retrieved concentrations were correct
or nearly so, at that partial signal length. Full convergence was attained for the Padé-
reconstructed peak parameters and concentrations for the normal glandular prostate
data at NP = 700 and remained stable at longer partial signal lengths, including the
full signal length [16,19].

For normal stromal prostate, full convergence was reached at NP = 600, as seen
in the right column of Tables 1 and 2, and remained stable at longer partial signal
lengths, including the full signal length [16,19]. Prior to convergence at NP = 500,
peaks ##11 and 13 at 3.2302 and 3.2503 ppm were unresolved. The peak heights
of the adjacent components of the taurine triplet (peaks ##14 and 15) were some-
what overestimated, whereas at NP = 500 the concentration of GPC, peak #12 was
calculated to be nearly twice its correct value. Most of the other computed concen-
trations were close or equal to the correct values at NP = 500. Thus, except that
convergence occurred at a shorter signal length, the pattern for Padé-reconstruc-
tion of the normal stromal prostate data was similar to that for normal glandular
prostate.

As was true for normal stromal prostate, Padé-reconstruction of the prostate cancer
data reached convergence at NP = 600, and remained stable at longer partial signal
lengths, including the full signal length [16,19]. At NP = 500, only one peak (#13)
was unresolved, but the height of adjacent component (peak #14) of the taurine triplet
was underestimated. Even though peak #11 (PCho) was resolved at that partial signal
length and its height slightly overestimated, the concentration of the adjacent GPC
peak (#12) was still overestimated by about a factor of two. Most of the other com-
puted concentrations were either fully or approximately correct, prior to convergence
at NP = 500 for the Padé-reconstructed data from malignant prostate.

Thus, it is seen that the FPT accurately reconstructed all the sought spectral parame-
ters for the data corresponding to the two types of normal prostate tissue and malignant
prostate. Without any fitting or numerical integration of peak areas, the FPT thereby
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provided reliable retrieved data for computation of the metabolite concentrations that
could be better distinguish non-cancerous from malignant prostate. This was achieved
at short signal lengths, which implies that problems due to Fourier-limited poor reso-
lution are circumvented.

3.4 Signal-noise separation

3.4.1 Reliable quantification of noisy MR time signals for in vivo data encoded
from human brain

Within the FPT, pole-zero cancellation (Froissart doublets) is used to distinguish
genuine from spurious resonances. This is demonstrated here for typical noisy MR
time signals. Our paper [17] provides an in-depth examination of the most chal-
lenging numerical aspects for solving the quantification problem in MRS. Specifi-
cally, we show that when the FPT is close to the convergence region, an unprec-
edented phase transition occurs, since literally a couple of additional signal points
are sufficient to reach full accuracy. As illustrated earlier in Fig. 3, residual spec-
tra are a necessary, but not sufficient criterion to estimate the error invoked in
quantification.

We emphasize that our proof for this principle becomes of critical importance to
solving the quantification problem of very closely overlapping resonances that arise
in the applications of the FPT to MRS signals in breast and prostate cancer. While
accuracy, resolving power, convergence rate and robustness of any signal processor
depend on such obvious parameters as the signal-to-noise ratio and the total acquisition
time of the investigated time signal, there are also a number of more subtle features of
spectral analysis that play a key role in the performance of a given estimator. These
include the configurations of the poles and zeros in the complex plane, their density
in the selected portion of the Nyquist interval, the smallest distance among the poles
and zeros, inter-separations among poles and zeros, their distance from the real axis
and the smallest imaginary frequencies (the longest lifetimes of the resonance states).
Among the most suitable mathematical tools for investigating these subtle effects are
Argand plots which display the imaginary part as a function of the corresponding real
part of any given complex-valued quantity. In MRS these graphs have special ram-
ifications stemming from the concept of Froissart doublets, via their mechanism of
pole-zero cancellations.

Figure 8 shows the results from the FPT for noisy MR time signals. The unique pole-
zero cancellations for the Froissart doublets seen in the FPT(+) (top panel) and FPT(−)

(middle panel) of Fig. 8, are simultaneously accompanied by zero-valued amplitudes
(bottom panel) as another illustration of how the FPT distinguishes genuine from
spurious resonances. The FPT(+) sharply separates the genuine from the spurious res-
onances in two different regions with positive and negative imaginary frequencies,
respectively. This unprecedented separation of the physical from the unphysical infor-
mational content of the investigated data using the FPT plays a key role in optimally
reliable spectral analysis for quantifications in MRS.
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3.4.2 Key step: practical implementation of SNS on MR time signals encoded
in vivo from the human brain on a clinical (1.5T) scanner

In Fig. 9 we compare the performance of the FPT and the FFT on an MR time signal
or FID of length N = 2048, bandwidth = 2500 Hz encoded in Ref. [47] from human
brain with a 1.5 T clinical scanner.

The top left panel (a) of Fig. 9 shows the encoded FID after experimental water
suppression. This is a complex-valued exponentially damped signal with the real and
imaginary parts as a function of time. On the top right panel (e) of Fig. 9, the time signal
is processed by the FFT in the full Nyquist range using all the FID points N = 2048.
It is seen that the residual water at 4.68 ppm is still the overwhelmingly dominant
peak. The remaining peaks for metabolites between 1 and 4 ppm are extremely small
relative to the water resonance.

The four middle panels of Fig. 9 compare convergence rates of the FFT (left panels
(b), (c)) and the FPT (right panels (f), (g)) at two partial signal lengths with the fixed
bandwidth. At N/8 = 256, the FFT provides only a rudimentary absorption total
shape spectrum. By contrast, in the FPT, N-acetyl aspartate at 2.0 ppm is close to its
correct form and Cho as well as Cr are clearly resolved. Full convergence is achieved
with the FPT at N/2 = 1024 (panel f), but not with the FFT (panel c). Most notably,
at half-signal length the ratio of Cho to Cr is incorrect with the FFT (as was the case
in Fig. 1 encoded at 4T). The FFT needs to exhaust the full signal length N = 2048
to converge.

The bottom panels (d, h) of Fig. 9 show the residual spectra: FFT at full signal
length (N = 2048) minus the FPT at two partial signal lengths. The FPT treats all
the physical metabolites on the same footing, including the enormous water peak. In
panel (d), [FFT (N = 2048)− FPT(N/8 = 256)], it is seen that the FPT is starting to
converge. In other words, the information from panel (d) coheres well with the cor-
responding Padé-spectrum at N/8 = 256 in panel (f). The residual spectrum shown
in panel (h): [FFT (N = 2048) − FPT(N/2 = 1024)] is at the level of background
noise and thus corroborates that the absorption total shape spectrum from the FPT has
indeed converged at half signal length.

Overall, as with FIDs encoded at high fields (4T, 7T) [1–3,9], the FPT outperforms
the FFT at 1.5 T by exhibiting a faster convergence rate and better resolving power. The
additional advantage of the FPT over the FFT is quantification. The displayed spectra
in the FPT have been computed by first extracting all the fundamental frequencies and
amplitudes. We unequivocally quantified 22 metabolites via the Signal-Noise Separa-
tion (SNS) procedure. By comparison, the LCModel via post-processing fitting of the
FFT spectra quantified only five metabolites [47]. This conclusion has been system-
atically confirmed with some 100 other spectra from healthy and pathological tissue
analysed in Ref. [48]. The leading role of the fast Padé transform in signal processing
is thereby further established.

Signal-noise suppression is illustrated in Fig. 10 from an MR time signal of length
N = 2048 encoded at the Karolinska Institute from the brain of a healthy volun-
teer. The top panel a displays the absorption total shape spectra, as initially computed
by the FFT and parametrically reconstructed by the FPT. These total shape spectra
contain genuine (physical) as well as spurious (unphysical, noisy) information. The
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formidable task is to separate the former from the latter, in order to reconstruct only
the genuine spectral parameters (yielding metabolite concentrations, chemical shifts,
relaxation times) as well as the component and total shape spectrum.

We effectively achieved the signal-noise separation, or SNS, by adding a few percent
noise to the already noisy in vivo FID. In the illustration for Fig. 10, the FID is cor-
rupted by random zero-mean 5% Gaussian white noise. Good statistics are secured
by creating 50 different realizations of this noise by merely changing the input seed
numbers to the computer’s generator of random numbers. This gives 50 noisy FIDs of
the same type, but comprised of different random numbers. When these different noisy
sets, each of length N = 2048, are added (one at a time) to the original in vivo FID,
50 noise-corrupted FIDs are obtained. Each FID is subsequently subjected to para-
metric spectral analysis by the FPT. This method reconstructs 50 sets of frequencies
and amplitudes. The retrieved averaged frequencies are plotted on panel b in Fig. 10,
where the abscissa is chemical shift and the ordinate is full-width at half maximum in
descending order. Panel c in Fig. 10 displays chemical shifts (abscissa) for each of the
50 sets/realizations (ordinates) of the fixed 5% random zero-mean Gaussian noise. It
is seen that frequencies plotted with the filled squares are stable for every noise real-
ization, whereas those associated with the open squares are unstable. Here, stability
means that both positions (chemical shifts) and full width at half maximum (FWHM)
are practically the same for all the 50 FIDs. Instability signifies that noticeable changes
occur either in chemical shifts or in FWHMs or in both.

All stable resonances are seen to have fundamental frequencies (spectral poles)
located relatively close to the real axis, and this yields narrow widths (longer life-
times) of the related peaks or resonances in the absorption spectrum. Unstable poles
roam around for each noise realization, especially when they are away from the real
axis. For example, the most pronounced instability is the open square at 0.7 ppm from
panel b and the associated widely wiggling symbols “x” (panel c) showing marked
alterations in chemical shifts when passing from one to another realization of noise.

In this way, stable and unstable features can confidently be identified as physi-
cal and unphysical (noisy) contents of the original in vivo FID and the corresponding
absorption spectrum. Stable poles are retained in the output of quantification and in the
ensuing spectra, whereas all unstable poles are discarded (panel d). The bottom panel d
displays the noise-reduced absorption total shape spectrum reconstructed by the FPT,
which is, hence, exclusively based upon the stable, genuine poles. Strikingly, this final
FPT-generated spectrum is significantly improved relative to the corresponding initial
full line (signal + noise) in panel a.

The net improvement is in getting rid of instability through the stability plot in
Fig. 10 or the SNS procedure. Note that most peaks in the initial spectrum from panel
a are asymmetrical due to shimming imperfections. In the usual practice, such encod-
ing artefacts are tackled by post-processing procedures, e.g. apodization (exponential
damping), zero-order phase correction, etc. This phasing amounts to multiplication
of the FFT-computed spectrum by exp(iφ), where φ is an arbitrary angle chosen sub-
jectively to partially diminish the distorting effect in the rolling baseline and, thus,
to make the total shape Fourier spectrum look “nicer” and closer to symmetrical
Lorentzian/Gaussian-type lineshapes. By contrast, the SNS procedure [14,17–19,25]
is objective, since it relies on the stability of the physical characteristics of the
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analyzed in vivo FID. For example, an improper shimming during the calibration of the
encoding system, which subsequently leads to asymmetrical peaks, is an extraneous
spectral content whose spuriousness is expected to be manifested through instability,
since such information is not an indigenous part of the original FID. By reference to
the full lines of panels a and d in Fig. 10, this is precisely what is objectively detected
via SNS. To summarize, via the SNS procedure, some 23 stable resonances are iden-
tified and quantified from an in vivo MR time signal encoded at 1.5 T. This illustrates
the advantage and possibility for practical implementation of the FPT/SNS in the
clinical setting. This should be contrasted to the usual practice of identifying only a
handful of metabolites by means of post-processed FFT. Currently, even with ratios
of concentrations from a few metabolites, MRS is viewed as a modality which could
revolutionize cancer diagnostics [49,50]. This potential can be significantly enhanced
by the expounded FPT/SNS strategy which consistently and reliably provides more
than 20 metabolite concentrations with clinical 1.5 T scanners [20].

4 Discussion: importance of these results for oncology

Since MRS is increasingly recognized as a potentially key diagnostic modality in
oncology [49–54], it is vital to overcome the shortcomings that hamper further clini-
cal applications of MRS in cancer diagnostics. In order to achieve this, more advanced
signal processing methods are needed, and it has now been demonstrated that the FPT
is the signal processing method of choice to achieve this goal.

The established algorithmic success of the FPT emerges from fundamental princi-
ples linking signal processing to quantum physics. Poor resolution and the inability
to separate noise from signal via FFT are major obstacles to data analysis and clinical
data interpretation for MRS in oncology. The superior resolution, noise suppression
and stability of the FPT for MRS signals are firmly and verifiably established [1–3,5–
10,14,17–20,23–25].

Our benchmark studies show that the FPT can provide optimal quantification of
MRS signals yielding reliable metabolite concentrations with intrinsic, robust error
analysis [1,5,7,8,12,19]. Distinction of genuine from spurious resonances has been
one of the thorniest challenges to MRS. Via the powerful concept of Froissart doublets,
the FPT achieves this task, filtering out completely all spurious information from the
final output data [14,17–19,25]. This new paradigm [17] is called “Signal-Noise Sep-
aration” and acronymed by SNS. Thus, for the first time the entire information about
metabolites, including concentrations is obtained without guessing and this obviates
the need for fitting with its attendant ambiguities that are clinically unacceptable.

The advantages of Padé-optimization were clearly demonstrated for MRS data
from four problem areas within oncology: ovarian, breast and prostate cancer as well
as brain tumors. We have applied the fast Padé transform to time signals associated
with in vitro MRS data encoded from (a) malignant and benign ovarian lesions, (b)
breast cancer, fibroadenoma and normal breast tissue and (c) for cancerous prostate,
normal stromal and glandular prostate. Before, in each of these areas, while showing
substantial potential, the diagnostic yield of MRS has been limited by the reliance
upon the FFT with post-processing through fitting. As stated, not only does the FFT
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have low resolution, but as a non-parametric method, it can only supply a total shape
spectrum. Thus, no information is provided about the actual number of resonances
present, and attempts at quantification via fitting the Fourier total lineshapes is highly
problematic, particularly whenever the spectrum is tightly packed with structures, as
is often the case.

The FPT applied to benign and malignant ovarian fluid, dramatically improved
SNR and provided highly accurate determination of key metabolite concentrations
for identifying ovarian cancer. These features of the FPT are deemed to be of critical
benefit to ovarian cancer diagnostics via MRS, in particular for early detection, a goal
which has thus far been elusive, and achievement of which would definitely confer a
major survival advantage.

The results for MRS data from the cancerous breast, fibroadenoma and normal
breast tissue, showed the advantages of the Padé-optimization, especially for areas
of high spectral density. The FPT unequivocally resolves and precisely quantifies
extremely closely lying resonances, including phosphocholine, a marker of malignant
transformation of the breast. This line of investigation is being continued with other
encoded data from benign and malignant breast tissue, both in vitro and in vivo. We
anticipate that Padé-optimized MRS will reduce the false positive rates of MR-based
modalities and further improve their sensitivity. Once this is achieved, and since MR
entails no ionizing radiation, new possibilities for screening/early detection will open
up, especially for risk groups, e.g. Padé-optimized MRS could be used with greater
surveillance frequency among younger women at high breast cancer risk.

Spectral overlap with multiplet resonances is recognized to be very troublesome
for MRS of the prostate [45]. Our results illustrate that the FPT can unequivocally
resolve and accurately quantify a large number of overlapping resonances, including
multiplets of metabolites that distinguish normal glandular prostate, normal stromal
prostate and prostate cancer. MRS with the accompanying Padé quantification applied
to prostate cancer is particularly important for diagnostic enhancement, because of
the current dilemmas surrounding prostate cancer screening (e.g. cutpoints of prostate
specific antigen (PSA)), as well as its public health importance.

MRS has made great strides in medicine by relying upon a mere handful of metabo-
lites, or even a single metabolite, e.g. choline for breast cancer. This severely restricted
metabolite window stems directly from the limitations of the FFT and subsequent post-
processing via fitting and other related phenomenological approaches with adjust-
able parameters. It is expected that the diagnostic yield of MRS in oncology will
be enhanced by extracting reliable information about many more metabolites. This
is facilitated by the FPT, on the basis of its proven validity, theoretically supported
by quantum physics and algorithmically confirmed by computations. This basic sci-
ence input is needed, since the empirical/phenomenological approaches have been
exhausted in this area. As a research field and a clinical diagnostic modality, MRS
is undergoing a veritable renaissance. Starting from its status as the well-established
nuclear magnetic resonance (NMR) in physics and analytical chemistry, MRS has
developed to such a point in medicine that it is currently being viewed by experts as
the modality which has the potential to revolutionize not only diagnostics, but also
molecular-image guided surgery and target delineation for radiotherapy [49–53].
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We have emphasized that there is an urgent need for accurate quantification to
determine metabolite concentrations, so that MRS can be better used to detect and
characterize cancers, with clear distinction from non-malignant processes. The FPT
provides accurate quantification of time signals associated with in vitro data from
ovarian, breast and prostate cancer as well as benign or normal tissue. We chose these
problem areas because of their urgent clinical importance.

Extensive validation of the FPT has been performed on in vivo encoded MRS
time signals from high field and clinical (1.5 T) scanners [1–7,9,19,22]. The FPT
is thus now established as the method which can robustly handle MRS problems of
key importance, i.e. separating noise from genuine signal, reconstructing completely
overlapping resonances (brain, breast spectra), or very dense spectra with numerous
multiplet resonances (prostate).

4.1 A link to radiation oncology and target planning

Magnetic resonance spectroscopy and MR spectroscopic imaging (MRSI) have been
applied most extensively in radiation neuro-oncology. Molecular imaging through
MRS and MRSI have been used to help define complex target geometries of brain
tumors and to evaluate new contrast-enhancing lesions appearing after RT [19,22].
Distinction between recurrent glioma and radiation necrosis with the appearance of
new contrast-enhancing lesions has been facilitated by MRSI. Most frequently, this
has been based upon the ratio of Cho/Cr. We have performed a meta-analysis of all
available published data comparing radiation necrosis and recurrent primary brain
tumors in new contrast enhancing lesions post-RT. The ratio of Cho/Cr was signifi-
cantly greater in the latter compared to the former. However, there was no ideal cut
point which unequivocally identified recurrent tumor, such that up to 50% of the brain
tumors could be mistaken for radiation necrosis [22]. As was illustrated in Figs. 1 and
9 of this paper, the accuracy of Cho/Cr metabolite ratios assessed using Fourier-based
processing of MR time signals was called into question. In sharp contrast, the fast
Padé transform accurately reconstructs the spectral parameters and thereby provides
the means for reliably computing the metabolite concentrations that are needed not
only for target definition, but also for follow-up, post-RT [22].

5 Conclusions

The results presented in this paper provide the basis for the needed next steps: to exten-
sively apply the FPT to in vivo time signals encoded mainly on clinical scanners from
e.g. brain tumors, breast, ovary and prostate cancers as well as from benign and nor-
mal tissue. Normative databases need to be developed for metabolite concentrations
versus those for cancers. These will distinguish malignant versus benign disease with
specific patterns of departures from normal metabolite concentrations. The overall
goal is that this practical approach through mathematical optimization enables Padé-
based MRS to soon be implemented in clinical oncology, including target planning,
post-radiotherapeutic follow-up and other aspects of radiation therapy.
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14. Dž. Belkić, K. Belkić, J. Math. Chem. 44, 887 (2008)
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25. Dž. Belkić, K. Belkić, J. Phys. B 44, 125003 (2011)
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